B.A. (Prog.) Semester-VI with Mathematics as Major <u>Category-II</u>

DISCIPLINE SPECIFIC CORE COURSE (DSC-6): ELEMENTARY MATHEMATICAL ANALYSIS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit d	listribution	· ·	Pre-requisite	
		Lecture		Practical/ Practice		of the course (if any)
Elementary Mathematical Analysis	4	3	1	0	Class XII pass with Mathematics	Discipline A-5: Elements of Real Analysis

Learning Objectives: The primary objective of this course is to introduce:

- Sequential criterion for limits and continuity of real-valued functions.
- Riemann integral of real-valued function f on [a, b] using Darboux sums.
- Pointwise and uniform convergence of sequences and series of functions.

Learning Outcomes: This course will enable the students to:

- Apply sequential continuity criterion for the proof of intermediate value theorem.
- Understand the basic tool used to calculate integrals.
- Apply uniform convergence for term-by-term integration in power series expansion.

SYLLABUS OF DSC-6

UNIT-I: Continuous Functions

(12 hours)

Sequential criterion for limits and continuity of functions, Continuity on intervals, Intermediate value theorem and applications; Uniform continuity.

UNIT-II: The Riemann Integral

(15 hours)

Riemann integration, criterion for integrability and examples; Integrability of continuous and monotone functions, Algebraic properties of the Riemann integral, Fundamental theorem of calculus (first form).

UNIT-III: Uniform Convergence

(18 hours)

Sequences and series of functions: Pointwise and uniform convergence, Uniform Cauchy criterion, Weierstrass M-test, Implications of uniform convergence in calculus; Power series, Radius and interval of convergence, Applications of Abel's theorem for power series.

Essential Reading

1. Denlinger, Charles G. (2011). Elements of Real Analysis. Jones & Bartlett India Pvt. Ltd. Student Edition. Reprinted 2015.

Suggestive Readings

- Bartle, Robert G., & Sherbert, Donald R. (2011). Introduction to Real Analysis (4th ed.).
 John Wiley & Sons. Wiley India Edition 2015.
- Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus (2nd ed.). Undergraduate Texts in Mathematics, Springer. Indian Reprint.

DISCIPLINE SPECIFIC CORE COURSE – 6 (Discipline A-6): PROBABILITY AND STATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &		Credit o	distribution		criteria	Pre-requisite of the course (if any)
Code		Lecture		Practical/ Practice		
Probability and Statistics	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives: The primary objective of this course is to:

- Make the students familiar with the basic statistical concepts and tools which are needed to study situations involving uncertainty or randomness.
- Render the students to several examples and exercises that blend their everyday experiences with their scientific interests to form the basis of data science.

Learning Outcomes: This course will enable the students to:

- Understand some basic concepts and terminology-population, sample, descriptive and inferential statistics including stem-and-leaf plots, dotplots, histograms and boxplots.
- Learn about probability density functions and various univariate distributions such as binomial, hypergeometric, negative binomial, Poisson, normal, exponential, and lognormal.
- Understand the remarkable fact that the empirical frequencies of so many natural populations, exhibit bell-shaped (i.e., normal) curves, using the Central Limit Theorem.
- Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.

SYLLABUS OF DISCIPLINE A-6

UNIT-I: Descriptive Statistics, Probability, and Discrete Probability Distributions (15 hours)
Descriptive statistics: Populations, Samples, Stem-and-leaf displays, Dotplots, Histograms,
Qualitative data, Measures of location, Measures of variability, Boxplots; Sample spaces

and events, Probability axioms and properties, Conditional probability, Bayes' theorem, and independent events; Discrete random variables & probability distributions, Expected values; Probability distributions: Binomial, geometric, hypergeometric, negative binomial, Poisson, and Poisson distribution as a limit.

UNIT-II: Continuous Probability Distributions

(15 hours)

Continuous random variables, Probability density functions, Uniform distribution, Cumulative distribution functions and expected values, The normal, exponential, and lognormal distributions.

UNIT-III: Central Limit Theorem and Regression Analysis

(15 hours)

Sampling distribution and standard error of the sample mean, Central Limit Theorem, and applications; Scatterplot of bivariate data, Regression line using principle of least squares, Estimation using the regression lines; Sample correlation coefficient and properties.

Practical (30 hours): Software labs using Microsoft Excel or any other spreadsheet.

- 1) Presentation and analysis of data (univariate and bivariate) by frequency tables, descriptive statistics, stem-and-leaf plots, dotplots, histograms, boxplots, comparative boxplots, and probability plots ([1] Section 4.6).
- 2) Fitting of binomial, Poisson, and normal distributions.
- 3) Illustrating the Central Limit Theorem through Excel.
- 4) Fitting of regression line using the principle of least squares.
- 5) Computation of sample correlation coefficient.

Essential Reading

1. Devore, Jay L. (2016). Probability and Statistics for Engineering and the Sciences (9th ed.). Cengage Learning India Private Limited. Delhi. Indian Reprint 2022.

Suggestive Reading

• Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the Theory of Statistics (3rd ed.). Tata McGraw-Hill Pub. Co. Ltd. Reprinted 2017.